> 数学 >
已知x>0,y>0.z>0求证(y/x+z/x)(x/y+z/y)(x/z+y/z)大于等于8
人气:494 ℃ 时间:2020-05-12 15:09:26
解答
由均值不等式可得:
y/x+z/x≥2√(y/x*z/x)
x/y+z/y≥2√(x/y*z/y)
x/z+y/z≥2√(x/z*y/z)
三式相乘即得
(y/x+z/x)(x/y+z/y)(x/z+y/z)
≥8√[(y/x*z/x)(x/y*z/y)(x/z*y/z)]
=8
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版