如果某多元函数不连续那它是不是一定不可微不可导?还有怎么求函数不...
如果某多元函数不连续那它是不是一定不可微不可导?还有怎么求函数不连续点集?如:f(x,y)=[sin(xy)]\x <x不等于0> f(x,y)=y <x=0> 此函数不连续点集为?
人气:286 ℃ 时间:2020-05-12 17:54:23
解答
多元函数不连续那它在不连续点集处一定不可微不可导.对于函数f(x,y),首先判定除直线x=0外,处处连续;其次求极限[sin(xy)]\x —>y=f(0,y),(当x—>0时),所以f(x,y)在整个实平面上无不连续点集.当x趋近于0的时候,函数极限趋近于y?为什么丫~不好意思 请解释一下~~sin(xy)]/x=y*sin(xy)/(xy)x--->0,xy---->0,sin(xy)/(xy)---->1;所以y*sin(xy)/(xy)---->y
推荐
猜你喜欢
- 有关基因工程的基本工具的几个简答题.
- (1)在微风中,在阳光下,燕子斜着身子在天空中掠过,“唧”的一声,已由这边的稻田上,飞到那边的柳树下了;还有几只横掠过湖面,剪尾或翼尖偶尔沾了一下水面,那小圆晕便一圈一圈地荡漾开去.这一段描写了小燕子活泼机灵的特点.
- 正五边形能不能密铺、正八边形呢?
- 一个圆形舞台,直径是20米,它的周长是多少米?如果在舞台上铺设每平方米80元的木板,至少需要多少元?
- 10-20毫克/千克的赤霉素+0.3%的尿素是什么意思
- 当铝原子变成离子 那么它的核电荷数是多少
- 反法西斯战争的有哪些国家
- 当√2-x有意义时,化简√x2-4x+4-√x2-6x+9的结果