> 数学 >
计算不定积分∫x√x2+1dx
人气:128 ℃ 时间:2020-10-02 01:24:00
解答
∫x√(x^2+1)dx
=(1/2)∫√(x^2+1)dx^2
=(1/2)∫(x^2+1)^(1/2)d(x^2+1)
=(1/2)*[(x^2+1)^(1/2+1)/(1/2+1)]+C
=(1/3)(x^2+1)^(3/2)+C
=(1/3)*(x^2+1)/√(x^2+1)+C
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版