设z=f(2x-y)+g(x,xy),其中函数f二阶可导,g具有二阶连续偏导数,求a^2z/axay (a就是那个偏导符号)
人气:180 ℃ 时间:2020-01-28 09:27:15
解答
dz/dx(用d表示偏导符号)=f'(2x-y)*2+g'1(x,xy)*1+g'2(x,xy)*y=2f'(2x-y)+g'1(x,xy)+y*g'2(x,xy)=2f'(2x-y)+g'1+yg'2(简单记法,g'1表示g对第一个变量的偏导数,g'2表示g对第二个变量的偏导数)
则d(dz/dx)/dy=-2f''(2x-y)+g''11*1+g''12*y+y*(g''21+g''22*y)=-2f''(2x-y+g''11+y*g''12+y*g''21+y^2*g''22
(g''12表示g先关于第一个变量求偏导,再对第二个变量求偏导,其它的类似)
推荐
- 设函数z=f(x,x/y),f具有二阶连续偏导数,求az/ax,a^2z/axay
- 求函数z=f(u,v),u=x+y,v=xy的复合函数z=g(x,y)的二阶混合偏导数∂²z/∂y∂x.
- 设z=f(xy,x+y),且f有连续的二阶偏导数,求a^2z/axay
- 求函数z=f(x^2y,xy^2)的二阶偏导数∂^2z/∂x^2 其中f具有二阶连续偏导数
- 设函数z=f(sinx,xy),其中 具有二阶连续偏导数,求ε^2z/εxεy
- “山东普惠利好商贸有限公司”翻译成英文,
- 语文练习册45页习作
- 某长方形花圃,长16米,宽10米,为了便于游人观赏,周围修了一条2米宽的道路.道路的面积是多少平方米?
猜你喜欢