实数abc满足abc=8,a+b+c=0,a^2+b^2+c^2=32求1/a+1/b+1/c的值
要解题思路清晰.
人气:158 ℃ 时间:2019-08-22 13:03:01
解答
若a+b+c=0,则
(a+b+c)²
=(a²+b²+c²)+2(ab+bc+ac)
=32+2(ab+bc+ac)=0
求得ab+bc+ac=-16
1/a+1/b+1/c
=(ab+bc+ac)/abc
=-16/8
=-2
推荐
- 已知a.b.c是非零实数,且满足b+c/a=c+a/b=a+b/c,求(a+b)(b+c)(c+a)/abc的值
- 如果a,b.c是非零实数,且a+b+c=0求a/ⅠaⅠ+b/ⅠbⅠ+c/ⅠcⅠ+abc/ⅠabcⅠ的值
- 已知实数A,B,C满足A+B+C=0,ABC=8,判断1/A+1/B=1/C的值的正负
- 若实数a,b,c满足a+b=8,c^2-ab+16=0,求abc的值
- 已知a、b、c均为实数,且a+b+c=0,abc=2,求|a|+|b|+|c|的最小值.
- 求几个词语的理解!
- 第1题 下列分子间存在氢键的是( )
- 123+654等于?
猜你喜欢