| 1 |
| x |
| 1 |
| x |
即4x2-4x+1=0,解得x=
| 1 |
| 2 |
所以函数y=f(x)-4的零点是
| 1 |
| 2 |
(2)设x1,x2是区间(
| 1 |
| 2 |
则f(x1)-f(x2)=4x1+
| 1 |
| x1 |
| 1 |
| x2 |
x1x2-
| ||
| x1x2 |
由x1>x2>
| 1 |
| 2 |
| 1 |
| 4 |
又由x1>x2,得x1-x2>0,所以4(x1-x2)
x1x2-
| ||
| x1x2 |
于是f(x1)>f(x2),
所以函数f(x)在区间(
| 1 |
| 2 |
| 1 |
| x |
| 1 |
| 2 |
| 1 |
| x |
| 1 |
| x |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| x1 |
| 1 |
| x2 |
x1x2-
| ||
| x1x2 |
| 1 |
| 2 |
| 1 |
| 4 |
x1x2-
| ||
| x1x2 |
| 1 |
| 2 |