> 数学 >
证明:若N为正整数,则(2N+1)^2-(2N-1)^2一定能被8整除
人气:249 ℃ 时间:2019-08-17 21:10:15
解答
(2n+1)^2-(2n-1)^2
=[(2n+1)+(2n-1)][(2n+1)- (2n-1)]]
=(4n)(2)=8n
因为n不为0
所以8n一定是8的倍数,即8n能被8整除
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版