证明:(1)∵AD⊥AC,AE⊥AB,∴∠DAC=∠BAE=90°,
∴∠DAB=∠EAC,
∵AD=BD,AE=EC,
∴∠DAB=∠DBA,∠ECA=∠EAC,
∴∠DBA=∠ECA,
∴△ADB∽△AEC,
∴
| S△ADB |
| S△AEC |
| AB |
| AC |
∵∠BCA=90°,
cos∠BAC=
| 4 |
| 5 |
| AC |
| AB |
∴
| S△ADB |
| S△AEC |
| 25 |
| 16 |
(2)过点E作EH⊥AC,延长交AB于G,连接DG,
∵AE=EC,
∴AH=CH,EH⊥AC,
∵∠BCA=90°,
∴GH∥BC,
∴AG=BG,
∵AD=BD,
∴DG⊥AB,
∵AD⊥AC,AE⊥AB,
∴GE∥AD,DG∥AE,
∴四边形ADGE是平行四边形,
∴AF=GF,
∴
| AF |
| FB |
| 1 |
| 3 |

