三角形ABC内接于圆O,过圆心O作BC的垂线交圆O于点P.Q,交AB于点D,QP.CA的延长线交于点E,求证:OA*OA=OD*OE
人气:479 ℃ 时间:2019-09-01 07:39:31
解答
证明:由于三角形ABC内接于圆O,连接OB,OC,则OA=OB=OC.
故∠OAB=∠OBA,∠OBC=∠OCB,∠OCA=∠OAC
又∠OAB+∠OBA+∠OBC+∠OCB+∠OCA+∠OAC=180°
则∠OAB+∠OCA+∠OCB=90°
则∠OAB+∠ACB=90°,又OQ⊥BC,则∠ACB+∠E=90°
等量代换,得∠OAB=∠E,又在△ADO和△EAO中,∠AOE公共,∠OAB=∠E
则△ADO∽△EAO,则OA:OD=OE:OA
即OA² =OD×OE
此题得证.
推荐
- 找出△abc的重心o,连接oa并延长交cb于d,oa与od有何关系,再连接bo并延长交ca于e,看ob与oe关系
- (1)如图1,圆内接△ABC中,AB=BC=CA,OD、OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G,求证:阴影部分四边形OFCG的面积是△ABC的面积的1/3.(2)如图2,若∠DOE保持120°角度不变,求证:当∠DOE
- 园内接三角形abc中,ab=bc=ca,od、oe为园o的半径,od垂直bc于f点,oe垂直ac于点g,
- (1)如图1,圆内接△ABC中,AB=BC=CA,OD、OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G,求证:阴影部分四边形OFCG的面积是△ABC的面积的1/3.(2)如图2,若∠DOE保持120°角度不变,求证:当∠DOE
- △ABC内接于圆O,CA=CB,CD∥AB且与OA的延长线交于点D
- 有15枚硬币共七枚,求其中一角、五角、一元三种硬币各多少枚?
- 设-1小于或等于x小于或等于2,则(x减2的绝对值)减(2分之1x的绝对值)加(x加2的绝对值)的最大值与最小值之差为多少
- 数学题经过直线:2x+y-3=0和直线:3x-2y-1=0的交点,且与原点的距离为根号2的直线方程
猜你喜欢