如何证明a/sinA=b/sinB=c/sinC=(a+b)/(sinA+sinB)
人气:463 ℃ 时间:2019-11-01 16:33:05
解答
因为根据正弦定理有:
a/sinA=b/sinB=c/sinC=2R,
所以,a=2R*sinA.b=2R*sinB.c=2R*sinC ;
则
a+b=2R*(sinA + sinB);
则(a+b)/(sinA+sinB)=2R;
所以
a/sinA=b/sinB=c/sinC=(a+b)/(sinA+sinB)
=2R
推荐
猜你喜欢
- l am not good at piaying basketball.(同义句)l ____ ____ ____ ____ playing basketball.
- 在三角形ABC中,角C=60度,高BE经过高AD的中点F,BE=10CM,求BF,EF的长
- 用炭粉在高温条件下还原CuO的缺点,说全面点.
- 在每个工序中确定加工表面尺寸和位置度所依据的基准是什么?
- 血红蛋白分子中含有574个氨基酸,4条肽链,在形成次蛋白质分子是,脱下的分子数和含有-NH2的数目至少是
- 为什么一天当中,气温最高值出现在午后14时?而不是12点?
- 五分之一:六分之一的最简整数比是5:6,这题对的错的?
- 4/9:1/6=x:1/3 解方程 会的大神给我解了它