函数f(x)=lnx/x(x>o)单调减区间
人气:265 ℃ 时间:2020-03-30 17:10:52
解答
求函数f(x)=lnx/x的单调递减区间
函数f(x)=lnx/x,定义域为x>0
f'(x)=[(1/x)*x-lnx*1]/x^2=(1-lnx)/x^2
那么,当1-lnx<0,即lnx>1,亦即:x>e时,f'(x)>0
所以,函数f(x)=lnx/x的递增区间为:x∈(e,+∞)
推荐
猜你喜欢
- 春季是一年中的第一个季节,是一年的开始.这句话用法语怎么翻译,急用.
- 4分之一加3分之一的和乘于12等于?
- 强酸为什么可以制弱酸
- you are in trouble,ask the policeman for help(用if合并句子)
- 一块平行四边形的铁周长是82厘米,一条底边长16厘米,这条底边的高是20厘米
- 1.果品店批发店存放的苹果是香蕉的3倍,春节前夕,平均每天批发出250千克香蕉,600千克苹果,几天后,香蕉全部批发完,苹果剩750千克,果品店原存放的苹果和香蕉各多少千克?
- (3.2+0.128)/0.8 简算
- 中译英:那是他们第一次见面,理查德决心要给那个女孩子留下一点儿印象(be determined to do)