if the function f satisfies the equation f(x+y)=f(x)+f(y) for every pair of real numbers x and y,what are the possible values of f(0)
A.any real number
B.any positive real number
C.0 and 1 only
D.1 only
E.0 only
人气:116 ℃ 时间:2020-04-20 12:46:21
解答
为您
如果函数 f 满足方程 f(X + Y)= F(X)+ F(y)的每对实数 x 和y,什么是 f (0)的可能值?
A.任何实数
B.任何正实数
C.只能是0和1
D.只能是1
E.只能是0额,我想知道选什么,和为什么那么选,不是翻译,谢谢等等,正在算中!请稍后
算出来了解令x=y=0
则由 f(X + Y)= f(X)+ f(y)
得f(0+0)=f(0)+f(0)
即2f(0)=f(0)
即f(0)=0
故选E。
望采纳!
推荐
- If the root equation (a²-1)x+5|b|-10=0 had inn,(a,b) is a pair of the real number
- Let f be a function such that f(x)=f(1-x) for all real numbers x.If f is differentiable everywhere,then f'(0)=?
- Let g be the function defined on the set of all real numbers by
- If a and b are non-zero real numbers and (1-99a)(1+99b)=b,then the value for 1/a-1/b+1 is( )
- 12.Let f(x) = x^2 + 6x + c for all real numbers x,where c is some real number.For what values of c does f(f(x)) have exa
- 已知二分之一,3,4这三个数,再添上一个数可以组成一个比例,这个数可以是()
- A={0,a}B={x|x∈A} A与B什么关系
- 用描述法表示大于9的所有实数组成的集合为
猜你喜欢