> 数学 >
设a为常数,函数f(x)=x2-4x+3,若f(x+a)在[0,+∞)上是增函数,则a的取值范围是______.
人气:127 ℃ 时间:2020-02-04 06:50:43
解答
因为f(x)=x2-4x+3,
所以f(x+a)=(x+a)2-4(x+a)+3=x2+(2a-4)x+a2-4a+3,
则f(x+a)的增区间为[2-a,+∞),
又f(x+a)在[0,+∞)上是增函数,
所以2-a≤0,解得a≥2,
故答案为:[2,+∞).
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版