一题大学概率论问题(求最大似然估计量的)
设总体X服从参数为m,p的二项分布,m已知,p未知,(x1,.Xn)是来自总体X的一个简单随机样本,求参数P的最大似然估计量
人气:162 ℃ 时间:2020-04-14 12:55:51
解答
P(X=xi)=C(m,xi)*p^xi*(1-p)^(m-xi)
所以极大似然函数:
L(x1,x2……xn,p)=C(m,x1)*C(m,x2)……*C(m,xn)*p^(∑xi)*(1-p)^(mn-∑xi)
取对数ln L=ln(C(m,x1)*C(m,x2)……*C(m,xn))+(∑xi)lnp+(mn-∑xi)ln(1-p)
对p求导
d(ln L)/dp=(∑xi)/p-(mn-∑xi)/(1-p)
在p=(∑xi)/mn时,d(ln L)/dp=0,且此时L取最大值
所以p的极大似然估计是p=(∑xi)/mn
推荐
猜你喜欢
- 一公斤铝合金30元,谁能帮我算出1平方铝合金(厚度为1.0)要多少钱
- 初中物理摩擦力的一个问题
- 玻璃,钢铁,塑胶,橡胶,木材,纸张的制作工艺
- 已知函数y=kx+b的图像中k>0,b>0,则y=2kx+b会由原图象怎样变化得来?
- 窃读记选文主要讲述了我窃读的经历,用简要的语言概括这两次经历的主要内容
- 木厂有28人,两个工人一天可以加工三张桌子,三个工人一天可以加工十只椅子,要使每天生产的一张桌子与...
- 除在文言文中的意思 需要词性+例句+在此句中的翻译+出处
- 若(N+2005)2=123456789,求(N+2015)(N+1995)的值.