设函数F(X)=ax^3+bx+c(a不等于0),为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导数f'(x)的最小值为-12
求:
1)a与b的值
我想问下切线与直线x-6y-7=0垂直说明什么?x-6y-7=0的斜率怎么算出是1/6?F'(1)=3a+b=-6又是怎么弄出的?就这几个问题不太懂,
人气:438 ℃ 时间:2019-10-18 03:08:59
解答
把x-6y-7=0改写成y=1/6x-7/6(形如y=kx+b),斜率自然就是1/6l了.
其次,两条直线相互垂直,如果直线斜率存在则二者斜率之积为-1,所以F'(1)=3a+b=-6
推荐
- 设函数f(x)=ax*3+bx+c(a不等于0)为奇函数,其图像在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f'(x)的最小值为-12.(1)求a,b,c的值;
- 设函数f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f′(x)的最小值为-12.求函数f(x)的解析式.
- 设t不等于0,点P(t,0)是函数f(x)=x^3+ax与g(x)=bx^2+c的图象的一个公共点,两函数的图象在点P处有相同切线
- 已知函数f(x)=ax的三次方+cx+d(a不等于0)是R上的奇函数,其图形在x=1处的切线与直线x-6y-7=0垂直,导函数f'(x)的最小值为-12,求a,b,c的值
- 设函数f(x)=ax^3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,且在x=2处取得极值.(I)求a,b,c,的值;(II)求函数f(x)在[-1,3]上的最大值和最小值
- 食堂的存煤,如果每天用130千克,按预计天数计算,就少60千克;如果每天用120千克,那么到期后还可剩余60千克.食堂存煤多少千克?预计用多少天?
- F(x)=x(e^x-1)-ax^2 (1) 若a=1/2,求法f(x)的单调区间 (2) 若当x≥0时f(x)≥0,求a的取值范围
- 某市出租车收费标准为:(1)小于3千米,起步价8元;(2)3千米及其以上且小于10千米,每增加1千米加收1.7元,不足1千米按1千米计算;(3)10千米及其以上,超出部分每千米另外再加收50%的返程费.某人乘出租车行了8.2千米,应付费(
猜你喜欢