设a1>0,an+1=1/2(an+1/an)(n=1,2……)问数列{an}的极限是否存在,若存在,求liman
n→∞
人气:101 ℃ 时间:2020-03-25 12:53:34
解答
首先证明:当n>1时an>=1,证明如下:
an+1=1/2(an+1/an)>=根号[an*(1/an)]=1
说明{an}有界.
上面用了这个不等式:(a+b)/2>=根号(ab)
其次证明其当n>1时单调不增:
an+1-an=1/2(1/an-an)
因为an>=1
所以1/an
推荐
猜你喜欢
- 作文 我与书的故事600字就行,谢谢(不许重复)
- 英语中喜欢与不喜欢表达法有哪些 越多越好
- 设A为3阶矩阵,|A|=1/2,求|(2A)-1-5A*
- 请问:maintain,stay,keep,hold 的区别,谢谢!
- 一块木板长198分米、宽90分米,要锯成若干个正方形,而且没有剩余,最少可以锯成多少块?
- 体积是100立方厘米的金属块,重7.9N(1)它的密度是多少?是什么金属?(2)当它全部浸没在水中时,受到的浮力是多大>这时如果把铁块挂在弹簧秤上,弹簧的读数是多少?
- 课外文言文 三间茅屋,十里春风
- 心肌细胞的动作电位是什么