O为正方形ABCD的中点,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G,连接OG,已知△BCE全等于△DCF .已知若GE*GB= 4-2倍的根号2求正方形的 面积
人气:121 ℃ 时间:2020-05-27 19:02:36
解答
已知:如图,O为正方形ABCD的中心,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连结DF,交BE的延长线于点G,连结OG.
(1) 试说明:△BCE≌△DCF;
(2) OG与BF有什么数量关系?说明你的理由;
(3) 若GE•GB=4- ,求正方形ABCD的面积.
【思考与分析】 (1)要说明△BCE和△DCF全等,我们只要结合题意,根据四边形ABCD为正方形,即可得;(2)要求OG和BF的关系,我们知道O是BD的中点,因此我们只要知道点G在DF的什么位置,问题即可得解;(3)看图我们可知道GE和GB在两个不同的三角形中,但是这两个三角形相似,因此我们可根据相似建立等量关系来解.
(1)在正方形ABCD中,BC=CD,∠BCD=90°.
因为 ∠DCF=∠BCD=90°,CF=CE,
所以 △BCE≌△DCF.
(2)OG= BF.
事实上: 由 △BCE≌△DCF,得到∠EBC=∠FDC.
因为 ∠BEC=∠DEG,
所以 ∠DGE=∠BCE,即 BG⊥DF.
因为 BE平分∠DBC,BG=BG,
所以 △BGF≌△BGD.
所以 BD=BF,G为DF的中点.
因为 O为正方形ABCD的中点,
所以 O为BD的中点.所以 OG= BF.
(3)设BC=x,则DC=x,BD= x.
由(2),得BF=BD= x.
所以 CF=BF-BC=( -1)x.
在Rt△DCF中,
因为 ∠GDE=∠GBC=∠GBD,∠DGE=∠BGD=90°,
所以 △DGE∽△BGD,所以
即DG2=GE•GB=4-2 .
因为 DF=2DG,
所以 DF2=4DG2=4(4-2 ).②
由①,②两式,得 x2+( -1)2x2=4(4-2 ).
解得 x2=4.
所以正方形ABCD的面积为4.
应该是这个吧
推荐
- 小升初数学提问
- 一.有一个棱长是一分米的正方体木块,在它的每一个面垂直向下挖去一个棱长是2厘米的正方形体孔,表面积增加了多少?
- 8.A={y|y=x^2-2x+1,x∈Z} B={X|X=t^2-2t+3,t∈R} 求A与B的关系
- 物体做匀加速直线运动,加速度为2m/s2,物体速度的变化是2/s为何不对
- 在梯形ABCD中,向量AB=2向量DC,AC 与BD交于O点,若AB=a,AD=b,则OC=
- 对don not play with the fire怎么回答
- ____from the top of the mountain .the city is very beautiful
- 一个圆柱体的底面直径是4分米,高是5分米,它的侧面积是_平方分米,表面积是_平方分米,体积是_立方分米.
猜你喜欢
- 如图,∠AOB是直角,OD平分∠BOC,OE平分∠AOC,求∠EOD的度数.
- rimming 和 vanilla
- 1/x=2是不是一元一次方程?
- 一罐啤酒多少热量相当于几个馒头
- 已知{an},{bn}都是等比数列,它们的前n项和分别为Sn,Tn,且Sn/Tn=(3的n次方+1)/4,对n属于N心恒成立,则a(n+1)/b(n+1)= A.3的n次方 B.4的n次方 C.3的n次方或4的n次方 D.(4/3)的n次方
- 函数f(x)=sinx+2|sinx|(x∈[0,2π)的图象与直线y=k有且仅有两个不同的交点,则k的取值范围是( ) A.[-1,1] B.(1,3) C.(-1,0)∪(0,3) D.[1,3]
- 小明3天看了一本书的4分之一,平均每天看了一本书的几分之几,七天能看完这本书的几分之几
- 放在光滑的水平面上的一辆小车的长度为L,质量等于M.在车的一端站一个人,人的质量等于m,开始时人和车都保持静止.当人从车的一端走到车的另一端时,小车后退的距离为