> 数学 >
当x∈(0,2]时,函数f(x)=ax^2+4(a+1)x-3在x=2时取得最大值
当x∈(0,2]时,
函数f(x)=ax^2+4(a+1)x-3在x=2时取得最大值,
则a的取值范围是?
人气:410 ℃ 时间:2020-06-13 13:11:44
解答

a=0,
f(x)=4x-3单调递增,的确在x=2取得最大值

a>0
抛物线开口向上,取得最大值只能在区间边缘取到,
已知区间(0,2],0不可取,只能取2;
所以要满足
f(0)<=f(2)
=>
-3<=12a+5
=>
a>=-3/2
而a已经大于0,必然满足

a<0
有两种情况;
1.
在抛物线尖嘴处取得最大值
2 = -2(a+1)/a
=>
a=-1/2
2.
(0,2]在抛物线的单调递增区间内,这时在2处取得最大值
2 <= -2(a+1)/a
a>=-1/2
综上,
只需
a>=-1/2即可
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版