> 数学 >
已知椭圆C的中心为直角坐标系xoy的原点,焦点在x轴上,它的一个顶点到两个焦点的距离分别为7和1
(Ⅰ)求椭圆C的方程
(Ⅱ)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的一点,OP/OM=λ(λ≥3//4),求点M的轨迹方程,并说明轨迹是什么曲线.
可以只发第二问 我光第二问不会 Orz
人气:117 ℃ 时间:2019-08-22 16:52:11
解答
(1)焦点在X轴,一个顶点到两个焦点的距离分别是7和1,则该顶点应在X轴,
∴2c=7-1=6,c=6/2=3,长半轴a=c+1=4,短半轴b=√(a^2-c^2)=√7,
椭圆方程为:x^2/16+y^2/7=1.
(2).|OP|/|OM|=λ,设M(x,y),P(x,k),P点与M横坐标相等,k是纵坐标,|OP|=√(x^2+k^2),
|OM|=√(x^2+y^2),P在椭圆上,x^2/16+k^2/7=1,
k=√112-7x^2)/4,x^2+(112-7x^2)/16=λ^2(x^2+y^2),点M的轨迹方程为:
x^2/(7(16λ^2-9)/16λ^2+y^2/7=1
当λ>3/4时,为椭圆,λ
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版