设A是三阶方阵,且|A-E|=|A+E|=|A+3E|=0,则|A^2-2A+3E|=
人气:487 ℃ 时间:2020-05-13 11:34:55
解答
因为A是三阶方阵,且|A-E|=|A+E|=|A+3E|=0,所以A的特征值为1,-1,-3.从而A^2-2A+3E的特征值为2,6,18,进而|A^2-2A+3E|=2*6*18=216.性质: 设s是矩阵A的特征值, 对任意的多项式f(x), 则f(s)是矩阵f(A)的特征值. A^2-2A+3E是多项式x^2-2x+3中变量x被矩阵A取代的结果,即是A的矩阵多项式.
推荐
猜你喜欢
- liz现在梳短发,但以前她是长发 翻译为英文
- consider the curve given by y的平方 =2+xy
- Ending what What I cannot do?
- 现在刚升入高一,数学学的是有关集合方面的问题,比如交集,并集,函数定义域,值域什
- only on sundays does he gets up at 9:00有错吗?get 后面加s
- 汤姆索亚历险记中海盗生活谢了()三个小海盗在()岛的清晨生活写了他们()的心境
- 甲,乙两人同时从A,B两地同时出发相向而行,经过5个小时相遇,甲再4个小时到达b地则a要几小时到b地的答案
- 解释垂直平面镜成像3个