> 数学 >
lim((x/x-1)-(1/inx)) (x->1)
求极限
人气:290 ℃ 时间:2020-05-30 05:46:27
解答
lim((x/x-1)-(1/lnx)) (x->1)
=lim(1+1/(x-1)-(1/lnx)) (x->1)
=lim(1+1/(t)-(1/ln(t+1))) (t->0)
lim[ln(t+1)/t]=[ln(t+1)'/t']=1(t->0)
1/(t)-(1/ln(t+1))=0
lim((x/x-1)-(1/lnx)) (x->1)
=(1+0)=1
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版