1、第一百层
球=1+2+3+...+100
=100*101/2
=5050
答:第一百层有5050个球
2、1+(1+2)+(1+2+3)+...+(1+2+3+...+100)
=1*100+2*99+3*98+...50*51+51*50+...+99*2+100*1
=2[1*100+2*(100-1)+3*(100-2)+...+50*(100-49)]
=2[1*100+2*100+3*100+...+50*100-(1*2+2*3+3*4+...+49*50)]
=2[100*(1+2+...+50)-∑n(n+1)]
=2[100*50*51/2-∑(n^2+n)]
=100*50*51-2*[n(n+1)(2n+1)/6+n(n+1)/2]
=100*50*51-2[49*50*99/6+49*50/2]
=100*50*51-49*50*33-49*50
=50*(100*51-49*33-49)
=50*(5100-1617-49)
=50*3434
=171700
答:从第一层到第一百层共有171700个球