抛物线C:y=-2/1x^2+6,点P(2,4)、A,B在抛物线上,且直线PA,PB的倾斜角互补,求证直线AB的斜率为定值
人气:176 ℃ 时间:2019-11-02 00:33:25
解答
希望你上课的时候能认真听讲啊
设AB两点的坐标分别为(x1,y1)和(x2,y2).
因为PA和PB是倾斜角互补,所以Kpa=-Kpb
因为Kpa=(y1-4)/(x1-2),同时Kpb=(y2-4)/(x2-2)
然后把抛物线的公式y=-2/1x^2+6带入上面的Kpa=-Kpb(且:Kpa=(y1-4)/(x1-2)和Kpb=(y2-4)/(x2-2))
得出x1+x2=-4.
最后计算AB两点的斜率公式:
y1-y2=-2/1(x1^2-x2^2); kab=-2/1(x1+x2)=2
推荐
- 抛物线方程y=-0.5x*2+m,点A和B及P(2,4)均在抛物线上,直线PA和PB的倾斜角互补.证:直线AB的斜率为定
- 已知抛物线y^2=4x,点P(1,2),A(x1,y1),B(x2,y2)在抛物线上,当PA与PB的斜率存在且倾斜角互补时,求.
- 已知抛物线c:x^2=-2(y-m),点a、b及p(2,4)均在抛物线上,且直线PA与PB的倾斜角互补
- 已知点A,B,P(1,2)是抛物线y^2=2px上的点,若直线PA,PB的倾斜角互补则直线AB的斜率是______
- 已知抛物线y^2=2px,点P(x0,y0)A(x1,y1),B(x2,y2)在抛物线上,当PA与PB的斜率存在且倾斜角互补时
- accord、treaty 和convention的区别是什么?
- 用加减法解二元一次方程组:
- 双缩脲鉴定蛋白质或多肽的存在
猜你喜欢