已知数列{an}中,满足a1=1,an=2an减1.加.2的n减1次方,设bn=2的n减1次方分之an 证明数列{bn}是等差数列 急
人气:212 ℃ 时间:2019-08-19 05:36:17
解答
bn=an/2^(n-1)
得an=bn*2^(n-1)
a(n-1)=b(n-1)*2^(n-2)
由an=2a(n-1)+2^(n-1),
得bn*2^(n-1)=2*b(n-1)*2^(n-2)+2^(n-1)
同除以2^(n-1)得:bn=b(n-1)+1
b1=a1/2^(1-1)=a1=1
则{bn}是首项为1,公差为1的等差数列.
推荐
- 在数列An中,A1=1,An+1=2An+2的n次方.(1)设Bn=An/2的(次方减1),证明:Bn是等差数列.(2)求数列An
- 数列an中,a1=1,an+1=2an+2的n次方,设bn=an/2∧n-1,证明bn是等差数列,求数列an的前n项和sn
- 在数列an中,a1=1,a(n+1)=2an+2的n次方 设bn=an/2的n-1方,证明(bn)是等差数列 求an的前n项和Sn
- 设数列an中的前n项的和为Sn,并且a1=1,Sn+1=4an+2,设bn=an比2的n次方,求证数列bn为等差数列
- 在数列an中,a1=1,a= 2an+2的n次方 1.设bn=an/2的n-1次方,证明:数列bn是等差数列
- 英语中s后的清辅音全部都会相应的浊化吗?
- 在语文学习中,字要________的写
- 荆轲私见樊於期,为什么能使樊於期慷慨献身?
猜你喜欢