对于各数互不相等的正数数组(i1,i2,…,in)(n是不小于2的正整数)...,如果当p >q 时,
有ip>iq,则称ip与iq是该数组的一个“好序”,一个数组中所有“好序”的个数称为此数组的“好序数”.例如数组1,3,4,2 中有好序“1,3”,“1,4”,“1,2”,“3,4”,其“好序数”等于4.若各数互不相等的正数数组a1,a2,a3,a4,a5,a6 的“好序数”是2,则a6,a5,a4,a3,a2,a1 的“好序数”是 .
人气:319 ℃ 时间:2020-02-03 06:02:32
解答
任意一个n的正数数组(i1,i2,…,in)(n是不小于2的正整数)
它的“好序数”最多是n-1+(n-2)+...+1=n(n-1)/2
所以当n=6时“好序数”最多是15个
如果正数数组a1,a2,a3,a4,a5,a6中已经成“好序”的两个数
在正数数组 a6,a5,a4,a3,a2,a1 中就不成“好序”
而正数数组a1,a2,a3,a4,a5,a6中不成“好序”的两个数
在正数数组 a6,a5,a4,a3,a2,a1 中就会成“好序”
所以正数数组 a6,a5,a4,a3,a2,a1 中就会成“好序数”就是15-2=13.
推荐
- 对于各数互不相等的正数数组(i1,i2,…,in)(n是不小于2的正整数),如果在piq,则称ip与iq是该数组
- n个数排列为i1,i2.in.逆序数是k,那么排列in,in-1,...,i2,i1,的逆序是多少?请说理由!
- 设排列i1 i2.in的逆序数是k,求排列in in-1 .i2 i1的逆序数,麻烦写仔细点
- [紧急求助]如何理解“I1由I2和匝数比决定”而不是“I2由I1和匝数比决定”?I1,I2分别为原线圈与副线圈电
- 已知排列i1.i2.i3.in的逆序数k,求排列in.i(n-1).i1的逆序数
- 关于三角形的各个“心”的定义问题 eg:重心,垂心等是啥线的焦点.谢
- 急遽奔流 什么意思啊啊啊啊啊啊啊?
- 0为什么不能做除数而能做因数
猜你喜欢