√{3+√[5-√(13+√48)]} /(√6+√2)
=√{3+√[5-√(12+2√12)+1]}/√6+√2)
=√{3+√[5-√(√12+1)^2} /(√6+√2)
=√{3+√[5-(√12+1)} /(√6+√2)
=√[3+√(4-√12)]/(√6+√2)
=√[3+√(4-2√3)]/(√6+√2)
=√[3+√(3-2√3+1)]/(√6+√2)
=√[3+√(√3-1)^2]/(√6+√2)
=√(3+√3-1)/(√6+√2)
=√(2+√3)/(√6+√2)
=√(4+2√3)/[√2(√6+√2)]
=√(3+2√3+1)/[√2(√6+√2)]
=√(√3+1)^2/[√2(√6+√2)]
=(√3+1)/[√2(√6+√2)]
=(√3+1)/[√2√2(√3+1)]
=1/2