由a1=3,a3=9得2(log22+d)=log22+log28,即d=1.
所以log2(an-1)=1+(n-1)×1=n,即an=2n+1.
(II)证明:因为
1 |
an+1−an |
1 |
2n+1−2n |
1 |
2n |
所以
1 |
a2−a1 |
1 |
a3−a2 |
1 |
an+1−an |
1 |
21 |
1 |
22 |
1 |
23 |
1 |
2n |
| ||||||
1−
|
1 |
2n |
即得证.
1 |
a2−a1 |
1 |
a3−a2 |
1 |
an+1−an |
1 |
an+1−an |
1 |
2n+1−2n |
1 |
2n |
1 |
a2−a1 |
1 |
a3−a2 |
1 |
an+1−an |
1 |
21 |
1 |
22 |
1 |
23 |
1 |
2n |
| ||||||
1−
|
1 |
2n |