所以a3,a4是方程x2-22x+117=0的两根.又d>0,所以a3<a4.
所a3=9,a4=13,d=4,故a1=1,an=4n-3.
(Ⅱ)由(Ⅰ)可得Sn=
n(1+4n-3) |
2 |
2n2-n | ||
n-
|
所以f(n)=
bn |
(n+36)bn+1 |
n |
n2+37n+36 |
1 | ||
n+
|
1 | ||
2
|
1 |
49 |
当且仅当n=
36 |
n |
1 |
49 |
Sn | ||
n-
|
bn |
(n+36)bn+1 |
n(1+4n-3) |
2 |
2n2-n | ||
n-
|
bn |
(n+36)bn+1 |
n |
n2+37n+36 |
1 | ||
n+
|
1 | ||
2
|
1 |
49 |
36 |
n |
1 |
49 |