| 8 |
| 5 |
| 15 |
| 7 |
| 24 |
| 9 |
| 3 |
| 3 |
| 8 |
| 5 |
| 15 |
| 7 |
| 24 |
| 9 |
进而可得写成 −
| (1+1)2−1 |
| 2×1+1 |
| (2+1)2−1 |
| 2×2+1 |
| (3+1)2−1 |
| 2×3+1 |
| (4+1)2−1 |
| 2×4+1 |
故一个通项公式为:an=(−1)n
| (n+1)2−1 |
| 2n+1 |
故答案为:an=(−1)n
| (n+1)2−1 |
| 2n+1 |
| 8 |
| 5 |
| 15 |
| 7 |
| 24 |
| 9 |
| 8 |
| 5 |
| 15 |
| 7 |
| 24 |
| 9 |
| 3 |
| 3 |
| 8 |
| 5 |
| 15 |
| 7 |
| 24 |
| 9 |
| (1+1)2−1 |
| 2×1+1 |
| (2+1)2−1 |
| 2×2+1 |
| (3+1)2−1 |
| 2×3+1 |
| (4+1)2−1 |
| 2×4+1 |
| (n+1)2−1 |
| 2n+1 |
| (n+1)2−1 |
| 2n+1 |