> 数学 >
已知函数f(x)=-x3+3x2+9x+a,求f(x)的单调递减区间.
人气:421 ℃ 时间:2019-08-18 17:14:31
解答
∵f(x)=-x3+3x2+9x+a,
∴f′(x)=-3x2+6x+9,
由f′(x)=-3x2+6x+9<0,
即x2-2x-3>0,解得x>3或x<-1,
即函数的单调递减区间为(3,+∞),(-∞,-1).
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版