在数列{a
n}中,a
1=1,
an+1=2an+2n;
(1)设
bn=.证明:数列{b
n}是等差数列;
(2)求数列{a
n}的通项公式.
人气:205 ℃ 时间:2019-08-17 12:05:38
解答
(1)∵
an+1=2an+2n,∴
=+1.
∵
bn=,∴b
n+1=b
n+1,
∴数列{b
n}是以
b1==1为首项,1为公差的等差数列.
(2)由(1)可知:b
n=1+(n-1)×1=n.
∴
n=,∴
an=n•2n−1.
推荐
- a1=1,an+1=2an+2^n 设bn=an/2^n-1 1证明bn是等差数列 2求an前n项和sn
- 数列an中,a1=1,an+1=2an+2的n次方,设bn=an/2∧n-1,证明bn是等差数列,求数列an的前n项和sn
- 数列an中 a1=1 a(n+1)=2an+2^n (1)设bn=an/2^(n-1) 证明{bn}是等差数列,(2)求数列{an}的前n项和Sn
- 在数列an中,a1=1,an+1=3an+3^n(1)设bn=an/3^n-1 证明:数列{bn}是等差数列(2)求数列an的前n项和Sn
- 数列{an}中,a1=1,an+1=2an+2^n(1)设bn=an/2^n-1.证明数列{bn}是等差数列(2)求数列{an}的前n项和sn
- Some students swimming in the sea,some students played beach volleyball.这句话对吗
- 阿拉伯语26个字母怎么写
- 怎么改双重否定句?
猜你喜欢