数列{an}中,Sn为前n项和,S(n+1)=4an+2,a1=1.设bn=a(n+1)-2an,证明{bn}是等比数列
人气:438 ℃ 时间:2019-08-20 07:46:08
解答
S(n+1)=4An+2
Sn=4a(n-1)+2
S(n+1)-Sn=a(n+1)
a(n+1)=4an-4a(n-1)
a(n+1)-2an=2(an-2a(n-1))
bn/b(n-1)=[a(n+1)-2an]/[an-2a(n-1)]=2
所以,{bn}是等比数列
推荐
- 设数列an的前n项和为Sn,已知a1=1,Sn+1=4an+2 (1)设bn=an+1-2an,证明数列{bn}是等比数列 (2)求数列{an}的通
- 设数列{An}的前n项和为Sn,已知A1=1,Sn+1=4An+2 求:(1)设bn=An+1-2An,证明数列{bn}是等比数列(2)求数
- 数列{an}中,a1=1,Sn+1=4an+2设bn=an+1-2an,求证{bn}是等比数列,并求{an}通项.
- 数列{an}中,a1=1,Sn+1=4an+2设bn=an+1-2an,求证{bn}是等比数列,并求其通项.设cn=an/2^n,求证cn是等差数列;求数列的通项公式和前N项和公式
- 设数列an中的前n项的和为Sn,并且a1=1,Sn+1=4an+2.设bn=A(n+1)-2an,求证bn是等比数列
- 什么茶组词
- 《风》古诗 这首诗的景色描写
- oh,it's,
猜你喜欢