已知x、y、z、是正实数,且x+y+z=xyz,求1/(x+y)+1/(y+z)+1/(x+z)的最大值.
人气:160 ℃ 时间:2019-09-23 09:30:34
解答
配凑柯西不等式1/(x+y)+1/(y+z)+1/(z+x)≤[1/2(xy)^0.5]+[1/2(yz)^0.5]+[1/2(zx)^0.5]=(1/2){1*[z/(x+y+z)]^0.5+1*[x/(x+y+z)]^0.5+1*[y/(x+y+z)]^0.5}≤(1^2+1^2+1^2)[x/(x+y+z)+y/(x+y+z)+z/(x+y+z)]^0.5=√3/2(这种证法综合运用了柯西不等式和基本不等式) 因此λ只要大于等于√3/2就行了
推荐
- 已知x,y,z∈R,且x+y+z=1,x2+y2+z2=3,则xyz的最大值是_.
- 已知实数xyz满足x^2+4y^2+9z^2=a(a>0),且x+y+z的最大值是1,求a的值
- xyz都是正实数,求xy+yz/x^2+y^2+z^2的最大值.
- 已知X,Y,Z是实数,且X2+Y2+Z2=3,X+Y+Z=1,则XYZ最大值是
- 已知实数xyz满足x/y+z+y/z+x+z/x+y=1求x^2/y+z+y^2/z+x+z^2/x+y的值
- 迈克尔逊干涉做出的白光干涉现象是什么?
- 在乘法算式中,一个因数扩大到原来的50倍,要使积不变,另一个因数要( ).
- 根据你对《十二章》的理解完成下面的题目.
猜你喜欢