设A,B是2个三阶矩阵,且detA=-2,det,B=-1,则det(-2A^2B^-1)=32 32是怎么算出来的?
人气:123 ℃ 时间:2019-11-12 05:12:11
解答
因为若矩阵M是n阶可逆方阵,k为常数,则det(k*M)=k^n*detM.
简单的说,就是常数k与矩阵乘积的行列式的求法,先把常数k乘进矩阵中每一个元素,再对得到的矩阵求行列式,即先把每一行都提一个常数k出来,就是k的n次方,再乘以原矩阵的行列式就可.所以上面的式子是32:
det(-2A^2B^-1)=(-2)^3*detA*detA*(detB)^(-1)=-8*2*2*(-1)=32
推荐
猜你喜欢
- 已知6,5,3,a四个数的平均数为5,18,10,6A,B五个数的平均数为10.求A,B的平均数
- 计划扩建操场,原操场长120米,宽70米,扩建后,长增加了30%,宽增加了35%,面积增加了百分之几?
- 为什么不用0度经线和180度经线组成的经线圈来划分东西半球?
- 句子乐园(造句)
- 泉水的介绍--------趵突泉
- 为什么在some后面用fruit是单数而vegetables却是复数
- 洛伦兹力推导安培力的过程(物理)
- 设n阶矩阵A的任意一行的元素之和都是a 证明a是矩阵A的一个特征值 求a对应的特征向量