1 设f(x)在[01]上有二阶导数,且|f ’’(x)|≤A,其中A为常数,f(0)=f(1)=0 .证明当 0≤x≤1时,f ’(x)≤A/2
人气:206 ℃ 时间:2020-04-18 12:36:06
解答
用泰勒公式
f(1)=f(x)+(1-x)f ’(x)+1/2f ’’(ξ1)(1-x)2 ①
f(0)=f(x)+(-x)f ’(x)+1/2f ’’(ξ2)x2 ②
①-②得0=f ’(x)+1/2f ’’(ξ2)x2+1/2f ’’(ξ1)(1-x)2
有f ’(x)≤1/2f ’’(ξ3)
∴f ’(x)≤A/2
推荐
- f(x)在(0,+∞)上具有二阶导数,对一切x>0有|f(x)|≤a,|f''(x)|≤b,a,b为常数.证明:|f'(x)|≤2√ab
- 设f(x)在(0,1)具有二阶导数,且|f(x)
- 设函数f(x)在[0,+∞)上有二阶连续导数,且对任意x>=0有f''(x)>=k,其中k>0,为一常数,f(0)
- 设f(x)在[1.2]具有2阶导数.且f(2)=f(1)=0,如果F(X)=(X-1)f(1),试证明至少存在一点*(1.2),使的F^^(*)=0
- 设f(x)在[0,1]上具有二阶连续导数,且|f''(x)
- 2a²-a-6,3x+3x-6,3m²-7m-6,6x²-x-15
- 描写花草姿势的四字词语
- 1.解方程(2x-3)^2+1=(3x-1)^2-5(x+3)(x-3) 2.解不等式(3x+2)(2-3x)<5x-9(x-6)(x+1)
猜你喜欢
- 已知极限lim(x→∞)(x^2+1)/x+1-(ax+b)=0,求常数a,b
- 一块平行四边形的菜地,底80M,6M,这地共收油菜籽842.24千克,平均没公顷能收多少千克的油菜籽
- 时针和分针在一昼夜重合多少次?
- 等量同种电荷连线中点,电势不为零 为什么
- NaHCO3与Na2CO3反应
- 滴定操作时,为什么经过三十秒不褪色为终点
- 人类改变环境的能力超过其他生物的原因,为什么包括 产生了语言,大脑的发育,能制造工具这三方面?
- 已知:如图,在平行四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA上的点,且AE=CG,BF=DH. 求证:△AEH≌△CGF.