∴其顶点坐标为(1,1)
当把C1向右平移2个单位,再向上平移1个单位时,
抛物线C2的顶点P的坐标为(3,2)
∴C2的解析式为y2=-(x-3)2+2;
(2)符合条件的N点存在.
如图:若四边形OPMN为符合条件的平行四边形,则OP∥MN,且OP=MN,
![](http://hiphotos.baidu.com/zhidao/pic/item/574e9258d109b3de3b8d2dd9cfbf6c81800a4c55.jpg)
∴∠POA=∠BMN,作PA⊥x轴于点A,NB⊥x轴于点B
∴∠PAO=∠MBN=90°,
∴△POA≌△NMB(AAS),
∴PA=BN,
∵点P的坐标为(3,2),
∴NB=PA=2,
∵点N在抛物线y1、y2上,且P点为y1、y2的最高点
∴符合条件的N点只能在x轴下方,
当点N在C1上时,y1=-2,即-2=-(x-1)2+1,
解得:x=1±
3 |
∴N1(1+
3 |
3 |
当点N在C2上时,y2=-2,即=-(x-3)2+2=-2,
解得:x=5或1,
∴N3(5,-2),N4(1,-2),
∴满足条件的点N有4个,分别是N1(1+
3 |
3 |