已知函数f(x)=ax2+bx+1(a,b为实数),x∈R,F(x)=f(x),(x>0)或-f(x),(x0)或-f(x),(x
人气:172 ℃ 时间:2019-10-10 05:54:55
解答
由f(-1)=0得a-b+1=0;若a=0,得b=1∴f(x)=x+1函数f(x)的值域为(-∞,+∞),与已知矛盾∴a≠0,函数f(x)=ax2+bx+1为二次函数∵函数f(x)的值域为[0,+∞),即函数f(x)的顶点的纵坐标为0.∴(4a-b^2)/4a=0 注∵a≠0∴4a-b^2...
推荐
- 已知函数f(x)=ax2+bx+1(a,b为实数),x∈R, (1)若f(x)有一个零点为-1,且函数f(x)的值域为[0,+∞),求f(x)的解析式; (2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是
- 已知二次函数f(x)=ax2+bx+c(a≠0)且满足f(-1)=0,对任意实数x,恒有f(x)-x≥0,并且当x∈(1,2)时
- 已知二次函数f(x)=ax2+bx+c满足①对于任意实数,都有f(x)≥x,且当x∈(1,3)时,f(x)≤(x+2)2/8恒成立②f(-2)=0
- 已知二次函数f(x)=ax2+bx+c,a、b、c∈R+,满足f(-1)=0,对于任意的实数
- 已知函数f(x)=ax2+bx+b-1(a=/0) 当a=1 b=-2时 求函数f(x)的零点 若对任意的实数b,
- 1/s=1/1980+1/1981+…+1/2001 求s的整数部分
- 一个长方形苗圃东西长2000米,南北80米,这个苗圃的面积有多少公顷?
- my parents like me very much否定经验和一般疑问句和画线部分提问
猜你喜欢