1.y'=lnx
==> y= -x + x lnx + C
根据初始条件x=1,y=-1,解得C=0.
有:y=-x + x lnx
2.∫(0,π) dx ∫(0,π) x f(y) dy = 1
==> ∫(0,π) dx x ∫(0,π ) f(y) dy = 1
==> ∫(0,π) x dx * ∫(0,π ) f(y) dy = 1
==> π^2/2 * ∫(0,π ) f(y) dy = 1
==> ∫(0,π ) f(y) dy = 2 / π^2
==> ∫(0,π ) f(x) dx = 2 / π^2