> 数学 >
已知:如图,△ABC内接于⊙O,AB为直径.∠CBA的平分线交AC于点F,交⊙O于点D.DE⊥AB于点E,且交AC于点P.连结AD,
求证:

(1)∠DAC=∠DBA;
(2)P是线段AF的中点.
人气:102 ℃ 时间:2019-08-17 00:00:00
解答
(1)∵BD平分∠CBA,
∴∠CBD=∠DBA,
∵∠DAC与∠CBD都是弧CD所对的圆周角,
∴∠DAC=∠CBD,
∴∠DAC=∠DBA.
(2)∵AB为直径,
∴∠ADB=90°,
又∵DE⊥AB于点E,
∴∠DEB=90°,
∴∠ADE+∠EDB=∠ABD+∠EDB=90°,
∴∠ADE=∠ABD=∠DAP,
∴PD=PA,
又∵∠DFA+∠DAC=∠ADE+∠PDF=90°且∠ADE=∠DAP,
∴∠PDF=∠PFD,
∴PD=PF,
∴PA=PF,即P是线段AF的中点.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版