f(x)在[a,b]上连续(a,b)内可导f(a)=f(b)=0,证明存在m属于(a,b),使得f'(m)+f(m)=0
人气:285 ℃ 时间:2020-07-04 08:57:44
解答
令F(x)=e^x*f(x) (f(x)乘一个e的x次方)
则F(a)=F(b)=0
则由罗尔定理有 存在m∈(a,b)
F'(m)=e^mf'(m)+e^mf(m)=e^m(f'(m)+f(m))=0
即f'(m)+f(m)=0
证毕
推荐
- 证明:设f(x)在【a,b】上连续且可导,a>0,则存在m、n属于(a,b),使得f’(m )=[(a+b)/2n]f'(n)
- 证明:f(x)在(a,b)可导连续,f(a)=f(b).至少存在一点m.使f(m)=f'(m)
- 设函数f(x)在[0,a]上连续,在(0,a)内可导,且f(0)=0,证明至少存在一点m属于(0,a)使得
- 设f(x)在[0,1]内连续,在(0,1)内可导,证明:存在m属于(0,1),使得f(m)+f'(m)=e^(-m)[f(1)e-f(0)]
- 设a>0,f(x)在[a,b]上连续,在(a,b)内可导,证明存在m,n∈(a,b),使得 f′(m)=(a+b/2n) f′(n)
- 2a²-a-6,3x+3x-6,3m²-7m-6,6x²-x-15
- 描写花草姿势的四字词语
- 1.解方程(2x-3)^2+1=(3x-1)^2-5(x+3)(x-3) 2.解不等式(3x+2)(2-3x)<5x-9(x-6)(x+1)
猜你喜欢
- 已知极限lim(x→∞)(x^2+1)/x+1-(ax+b)=0,求常数a,b
- 一块平行四边形的菜地,底80M,6M,这地共收油菜籽842.24千克,平均没公顷能收多少千克的油菜籽
- 时针和分针在一昼夜重合多少次?
- 等量同种电荷连线中点,电势不为零 为什么
- NaHCO3与Na2CO3反应
- 滴定操作时,为什么经过三十秒不褪色为终点
- 人类改变环境的能力超过其他生物的原因,为什么包括 产生了语言,大脑的发育,能制造工具这三方面?
- 已知:如图,在平行四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA上的点,且AE=CG,BF=DH. 求证:△AEH≌△CGF.