> 数学 >
设三角形ABC的内角A,B,C的对边分别为a,b,c,且A=60度,c=3b,求:a/c的值; 1/tanB+1/tanC的值.
人气:158 ℃ 时间:2019-10-14 06:20:05
解答
cotB+cotC=cosB/sinB+cosC/sinC=(cosBsinC+sinBcosC)/(sinBsinC)=sin(B+C)/(sinBsinC)=sin(180°-A)/(sinBsinC)=sinA/(sinBsinC)又由正弦定理,a/sinA=b/sinB=c/sinC=2R,所以,cotB+cotC=[a^2/(bc)]/sinA=[a^2/(3b^2)]...
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版