(1)直线BD与⊙O相切.证明:如图1,连接OD.
∵OA=OD,
∴∠A=∠ADO.
∵∠C=90°,
∴∠CBD+∠CDB=90°.
又∵∠CBD=∠A,
∴∠ADO+∠CDB=90°.
∴∠ODB=90°.
∴直线BD与⊙O相切.
(2)解法一:如图1,连接DE.
∵∠C=90°,BC=2,BD=
| 5 |
| 2 |
∴cos∠CBD=
| BC |
| BD |
| 4 |
| 5 |
∵AE是⊙O的直径,∴∠ADE=90°.
∴cosA=
| AD |
| AE |
∵∠CBD=∠A,
∴
| AD |
| AE |
| BC |
| BD |
| 4 |
| 5 |
∵AE=2AO,
∴
| AD |
| AO |
| 8 |
| 5 |
解法二:如图2,过点O作OH⊥AD于点H.
∴AH=DH=
| 1 |
| 2 |
∴cosA=
| AH |
| AO |
∵∠C=90°,BC=2,BD=
| 5 |
| 2 |
∴cos∠CBD=
| BC |
| BD |
| 4 |
| 5 |
∵∠CBD=∠A,
∴
| AH |
| AO |
| BC |
| BD |
| 4 |
| 5 |
∴
| AD |
| AO |
| 8 |
| 5 |

C,AB分别交于点D,E,且∠CBD=∠A.