> 数学 >
1、已知,如图正方形ABCD,E是BC的重点,CF为∠BCD的外角∠GCD的平分线,EF⊥AE.求证:AE=EF.
2、正方形ABCD,E为AC上的任一点,现作EF⊥AB於F,作EG⊥BC於G,试猜测DE与FG的关系,并说明理由【图传不上来,请到我空间相册的“只是为了传图才创建的无意义...”里看.
人气:179 ℃ 时间:2020-09-06 09:09:44
解答
1.作FH⊥CG于H
因为∠FHC=90°,∠FCH=∠FCD=45°
所以∠HFC=∠HCF
所以FH=CH
因为EF⊥AE,所以∠FEH+∠AEB=90°
又 ∠EAB+∠AEB=90°
所以∠FEH=∠EAB,又∠FHE=∠EBA
所以三角形FHE相似于EBA 所以EH/FH=AB/EB=2,又FH=CH
所以EC=HC,所以EH=2CE=AB
再由∠FEH=∠EAB,又∠FHE=∠EBA得三角形FHE全等于EBA
所以AE=EF得证
2.DE⊥FG,因为当E移动到AC中点时,显然DE⊥FG.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版