> 数学 >
已知函数f(x)=lnx-bx-a/x(a,b为常数),在x=1时取得极值
当a=-2时求函数的最小值
人气:343 ℃ 时间:2020-03-29 02:20:55
解答
解:f(x)=lnx-bx-a/x(x>0)
f'(x)=(1/x)-b+(a/x^2)
由已知得 f'(1)=(1/1)-b+(a/1^2)=a-b+1=0
又 a=-2 得 b=-1
f(x)=(lnx)+x+(2/x) (x>0)
f'(x)=(1/x)+1-(2/x^2)=(x-1)(x+2)/x^2 (x>0)
其中 (x+2)/x^2>0
x∈(0,1)时,f'(x)
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版