> 数学 >
1.f(x)=向量a·向量b,其中向量a=(2cosx,1),向量b(cosx,√3sin2x+m)
(1)求函数f(x)最小正周期和在[0,π]上的单调递增区间.
(2)当x∈[0,π/6]时,-4<f(x)<4恒成立,求实数m的取值范围.
2.已知向量a=(cosa,sina),向量b=(cosb,sinb),|a-b|=2/5√5
(1)求cos(a-b)的值.
(2)-π/2<b<0<a<π/2,且sinb=-5/13,求sina的值.
人气:442 ℃ 时间:2020-04-15 02:12:57
解答
1.:(1)f(x)=向量a*向量b=2(cosx)^2-1+√3sin2x+m+1=2cos(2x-π/3)+m+1 (^表示平方)所以 f(x)的最小正周期为 π ,若使f(x)单调递增,则 2kπ-π<2x-π/3<2kπ(k=0,正负1,正负2……)同时x在[0,π]区间 (对k赋...
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版