均值不等式的疑问
x+y+z = pi ,求 sinx+siny+sinz 的最大值
这题用和差化积做是(3/2)*根号2,但是如果用均值不等式,sinx+siny+sinz>=3(sinxsinysinz)^(1/3).当x=y=z=pi/3时取等,此时最小值是(3/2)*根号2,这是怎么回事?
0
人气:244 ℃ 时间:2020-06-02 03:15:01
解答
你的问题主要在没有搞清处右边应该为定值.
>=(sinxsinysinz)^(1/3).当x=y=z=pi/3时取等
表面上看是取了定值,但这是不允许的.
比如已知x,y为正数,x^2+y^2=4,求x+y的最大值
(x+y)^2=x^2+y^2+2xy=4+2xy<=4+x^2+y^2=8
此时可用均值不等式因为x,y可以相等,而且x^2+y^2是一个定值,即已知常数.
同样的,
x+y>=2根号xy
2xy<=4
不等号方向相反,又当x=y时可同时取等号,故可将xy=4代入,得x+y>=4(x=y时取到)
此时得xy也是定值、
推荐
猜你喜欢
- 清朝九门提督相当于现在的什么官职?
- Japan is _the east of China.A,to B,on ,in选择?为什么?
- 一个数的小数点先向左移动一位,又向右移动了三位后,所得到的数比原数大495,原来这个数是多少?
- There isn't so much pollution in the coiuntry () in big cities
- The story is ___ interesting that many children enjoy it.
- 补充成语;()()不论
- 我们的生活水平不断改善这句话有什么毛病
- 工地上运到一批水泥,第一次搬了30袋,第二次搬了50袋,还剩下这批水泥的七分之三没搬,这批水泥共有多少袋