已知Sn是数列{an}前n项的和,且2lg[(Sn-an+1)/2]=lgSn+lg(1-an) 求an,Sn
人气:328 ℃ 时间:2020-05-20 07:31:56
解答
先设 1-an=a;
然后,原等式就可以写成:2lg(Sn+a)/2=lgSn*a;
化解等式就有:(Sn+a)(Sn+a)=4a*Sn;就有D碗话碗,就有Sn=a=1-an;
由上式得:S(n-1)=1-a(n-1);
因:an=Sn-S(n-1);所以:an=(1-an)-(1-a(n-1))=a(n-1)-an;
所以有:2an=a(n-1);
所以有:an/a(n-1)=1/2;
令n=1,得a1=1/2;
an=(1/2)^n
sn=1/2-(1/2)^(n+1)/(1-1/2)
=1-(1/2)^(n)
推荐
猜你喜欢
- 在2-【2(x+y)-()】=x+2,括号内应填
- 在暗室里用红光照射一幅绚丽多彩的油画作品,将会看到什么现象?为什么?
- 墨守成规象征哪个人物
- 将一个末尾数字不小于零的正整数的末尾数字去掉后,所得的新数是原数的约数,则这种性质的正整数当中,
- 1,2,3,4,5这5个数字可以组成许多个没有重复的四位数,将他们从小到大排列起来,4123是第几个数?
- chuck wall
- 如图所示,竖直固定放置的斜面DE与一光滑的圆弧轨道ABC相连,C为切点,圆弧轨道的半径为R,斜面的倾角为θ.现有一质量为m的滑块从D点无初速下滑,滑块可在斜面和圆弧轨道之间做往复
- 替凡卡的爷爷写一封信给凡卡