求下列第一型曲线积分 ∫L√(2y^2+z^2)ds,其中L为球面x^2+y^2+z^2=a^2与平面x=y的交线.
我做出来是a∫Lds,我觉得是a*2πa,全书给的答案L是椭圆2y^2+z^2=a^2的周长.不明白,求解释
人气:423 ℃ 时间:2020-02-04 08:30:02
解答
你的答案是正确的,书上给的答案错误.
在计算∫L ds时应当用曲线的周长,所以你给出球大圆的周长是正确的.
而书上说的椭圆2y^2+z^2=a^2其实是那个球大圆投影到XOY面后的椭圆,这个显然不是题中的曲线,所以错误.
推荐
- 求下列第一型曲线积分 ∫L|y|ds,其中L为球面x^2+y^2+z^2=2与平面x=y的交线
- 利用轮换对称性计算∫L(x^2+y-z)ds,其中L为球面x^2+y^2+z^2=a^2与平面x+y+z=0的交线
- 数学曲线积分 求i=∫y²ds, 其中c是球面x²+y²+z²=r²与平面x+y+z=0的交线
- 计算∫根号(2y^2+z^2)ds,其中L为球面X^2+Y^2+Z^2=3与平面X=Y相交的圆周.
- 求曲线积分∫(x^2)*zds,其中为球面x^2+y^2+z^2=a^2与平面x+y+z=0的交线
- 丑小鸭和我的作文
- 地球半径为R,地面上重力加速度为g,在高空绕地球做匀速圆周运动的人造卫星,其线速度可能为?我算到gr^2 但答案为(gr/2)^2 为什么
- 有两桶油,第一桶油是第二桶油的1.5倍,如果从第一桶油中倒入第二桶4千克,两用油相等
猜你喜欢