(2)f(x)=x^2+bx+c不存在零点,则b^2-4c<0;
由f(3)=1得:3^2+b*3+c=1,c=-3b-8;代入上式:
b^2-4(-3b-8)<0,b^2+12b+32<0;解得:-8(3)若f(x)=x^2+bx+c存在零点,b取值范围与(2)相反,即b≤-8或b≥-4;b^2+c^2的最大值呢2)补充c=-3b-8,b^2-4c<0;且-8b^2+c^2=b^2+(-3b-8)^2=10b^2+48b+64=10(b+2.4)^2+6.4;b^2+c^2的极值点在b=-2.4处,根所b的取值范围-8
推荐
- 设f(x)=x2+bx+c(b,c∈R).若|x|≥2时,f(x)≥0,且f(x)在区间(2,3]上的最大值为1,求b2+c2的最大值和最小值.
- 设f(x)=x^2+bx+c(b,c属于R),若|x|≥2时f(x)≥0,且f(x)在区间(2,3]上的最大值为1,
- 设f(x)=x^2+bx+c(b,c属于实数),若x的绝对值大于等于2时,f(x)大于等于0,且f(x)在区间(2,3]上的最
- 设f(x)=x^2+bx+c(b,c属于R),若|x|≥2时f(x)≥0,且f(x)在区间(2,3]上的最大值为1,求b^2+c^2的最大值
- 设二次函数f(x)=ax2+bx+c在区间[-2,2]上的最大值、最小值分别为M、m,集合A={x|f(x)=x}.
- 春风和煦的诗句
- 甲、乙两人在同一条路上前进,甲每小时5km,乙每小时行7km,甲于中午12点时经过A地,乙于下午2点经过A地,
- x:8=0.2::1/2过程啊啊啊啊啊啊啊啊啊啊啊
猜你喜欢