∴an+1=2n⇒an=2n-1,(n∈N*)
证明:(2)由韦达定理分析易知,方程f(x)=0有根则必有正根,∴只需△≥0即可△=(1-an)2-4
a | 2n-1 |
a | 2n-1 |
an+1 |
an-1+1 |
∴an+1=(a1+1)•
a2+1 |
a1+1 |
a3+1 |
a2+1 |
an+1 |
an-1+1 |
∴
1 |
a1+1 |
1 |
a2+1 |
1 |
a3+1 |
1 |
an+1 |
1 |
2 |
1 |
22 |
1 |
2n |
| ||||
1-
|
1 |
2n |
1 |
a1+1 |
1 |
a2+1 |
1 |
a3+1 |
1 |
an+1 |
a | 2n-1 |
a | 2n-1 |
an+1 |
an-1+1 |
a2+1 |
a1+1 |
a3+1 |
a2+1 |
an+1 |
an-1+1 |
1 |
a1+1 |
1 |
a2+1 |
1 |
a3+1 |
1 |
an+1 |
1 |
2 |
1 |
22 |
1 |
2n |
| ||||
1-
|
1 |
2n |